Unraveling ice multiplication in winter orographic clouds via in-situ observations, remote sensing and modeling
-
Vergara – Temprado , J.et al .strong control of Southern Ocean cloud reflectivity by ice – nucleate particle .Proc.Natl Acad.Sci.USA 115, 2687–2692 ( 2018 ) .
article
CASGoogle Scholar
-
Tan, I.& Storelvmo, T.Evidence of Strong Contributions From Mixed-Phase Clouds to Arctic Climate Change.geophy .Res .Lett. 46, 2894–2902 (2019).
Article
Google Scholar
-
Heymsfield, A.J.et al.Contributions of the Liquid and Ice Phases to Global Surface Precipitation: Observations and Global Climate Modeling.J.Atmos .Sci . 77, 2629–2648 ( 2020 ) .
Article
Google Scholar
-
Mülmenstädt, J., Sourdeval, O., Delanoë, J.& Quaas, J.Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals.geophy .Res .Lett. 42, 6502–6509 (2015).
Article
Google Scholar
-
Korolev, A.& Milbrandt, J.How Are Mixed-Phase Clouds Mixed? geophy .Res .Lett.49, e2022GL099578 ( 2022 ) .
-
Field, P.R.et al.Simultaneous radar and aircraft observations of mixed-phase cloud at the 100 m scale.Q.J.R.Meteorol.Soc. 130, 1877–1904 ( 2004 ) .
Article
Google Scholar
-
Bergeron, T.On the physics of clouds and precipitation.Report, International Union of Geodesy and Geophysics, https://doi.org/10.1038/174957a0 (1935).
-
Findeisen, W.Die kolloidmeteorologischen vorgänge bei der niederschlagsbildung.Meteorol.Z. 55, 121–133 ( 1938 ) .
Google Scholar
-
Wegener, A.Thermodynamik der Atmosphäre, 331 pp.(Ger.Barth,Leipzig, 1911).
-
Matus, A.V.& L’Ecuyer, T.S.The role of cloud phase in Earth’s radiation budget.J.Geophys.Res. 122, 2559–2578 (2017).
Article
Google Scholar
-
McCoy, D.T., Tan, I., Hartmann, D.L., Zelinka, M.D.& Storelvmo, T.On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs.J.Adv.Model.Earth Syst. 8, 650–668 (2016).
Article
Google Scholar
-
Zelinka, M.D.et al.Causes of Higher Climate Sensitivity in CMIP6 Models.geophy .Res .Lett. 47, 1–12 (2020).
Article
Google Scholar
-
Hoose, C.& Möhler, O.Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments.Atmos.Chem.Phys. 12, 9817–9854 (2012).
-
Murray, B.J., O’Sullivan, D., Atkinson, J.D.& Webb, M.E.Ice nucleation by particles immersed in supercooled cloud droplets.Chem.Soc.Rev. 41, 6519–6554 ( 2012 ) .
article
CASGoogle Scholar
-
Kanji, Z.A.et al.Overview of Ice Nucleating Particles.Meteorol.Monogr. 58, 1.1–1.33 (2017).
Article
Google Scholar
-
Field, P.R.et al.Chapter 7.Secondary Ice Production – current state of the science and recommendations for the future.Meteorol.Monogr. 58, 7.1–7.20 (2017).
Google Scholar
-
Korolev, A.& Leisner, T.Review of experimental studies of secondary ice production.Atmos.Chem.Phys. 20, 11767–11797 (2020).
-
Huang, Y.et al.Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production.Atmos.Chem.Phys. 22, 2365–2384 (2022).
article
CASGoogle Scholar
-
Young, G.et al.Radiative Effects of Secondary Ice Enhancement in Coastal Antarctic Clouds.geophy .Res .Lett. 46, 2312–2321 (2019).
Article
Google Scholar
-
Grzegorczyk, P.et al.Fragmentation of ice particles: laboratory experiments on graupel-graupel and graupel-snowflake collisions.Atmos.Chem.Phys. 23, 13505–13521 (2023).
article
CASGoogle Scholar
-
Kleinheins, J., Kiselev, A., Keinert, A., Kind, M.& Leisner, T.Thermal imaging of freezing drizzle droplets: pressure release events as a source of secondary ice particles.J.Atmos .Sci . 78, 1–28 (2021).
Google Scholar
-
Lasher-Trapp, S.et al.A multisensor investigation of rime splintering in tropical maritime cumuli.J.Atmos .Sci . 73, 2547–2564 (2016).
Article
Google Scholar
-
Lawson, R.P., Woods, S.& Morrison, H.The microphysics of ice and precipitation development in tropical cumulus clouds.J.Atmos .Sci . 72, 2429–2445 (2015).
Article
Google Scholar
-
Järvinen, E.et al.Evidence for Secondary Ice Production in Southern Ocean Maritime Boundary Layer Clouds.J.Geophys.Res.Atmos. 127, 1–31 ( 2022 ) .
Article
Google Scholar
-
Billault-Roux, A.-C.et al.Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study.Atmos.Chem.Phys. 23, 10207–10234 (2023).
article
CASGoogle Scholar
-
Grazioli, J.et al.Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014.Atmos.Chem.Phys. 15, 13787–13802 ( 2015 ) .
article
CASGoogle Scholar
-
Luke, E.P., Yang, F., Kollias, P., Vogelmann, A.M.& Maahn, M.New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic.Proc.Natl Acad.Sci.USA 118, 1–9 (2021).
Article
Google Scholar
-
Li, H., Möhler, O., Petäjä, T.& Moisseev, D.Two-year statistics of columnar-ice production in stratiform clouds over Hyytiälä, Finland: Environmental conditions and the relevance to secondary ice production.Atmos.Chem.Phys. 21, 14671–14686 ( 2021 ) .
article
CASGoogle Scholar
-
Atlas, R.L.et al.How Well Do Large-Eddy Simulations and Global Climate Models Represent Observed Boundary Layer Structures and Low Clouds Over the Summertime Southern Ocean? J.Adv.Model.Earth Syst. 12, 1–25 ( 2020 ) .
Article
Google Scholar
-
Sotiropoulou, G.et al.Secondary ice production in summer clouds over the Antarctic coast: An underappreciated process in atmospheric models.Atmos.Chem.Phys. 21, 755–771 (2021).
article
CASGoogle Scholar
-
Zhao, X.& Liu, X.Global Importance of Secondary Ice Production.geophy .Res .Lett. 48, 1–11 (2021).
CAS
Google Scholar
-
Hoose, C.Another Piece of Evidence for Important but Uncertain Ice Multiplication Processes.AGU Adv. 3, 2021–2023 (2022).
Article
Google Scholar
-
Hallett, J.& Mossop, S.C.Production of secondary ice particles during the riming process.Nature 249, 26–28 (1974).
article
CASGoogle Scholar
-
Heymsfield, A.J.& Mossop, S.C.Temperature dependence of secondary ice crystal production during soft hail growth by riming.Q.J.R.Meteorol.Soc. 110, 765–770 (1984).
Article
Google Scholar
-
Phillips, V.T.J., Yano, J.I.& Khain, A.Ice multiplication by breakup in ice-ice collisions.Part I: Theoretical formulation.J.Atmos .Sci . 74, 1705–1719 (2017).
Article
Google Scholar
-
Takahashi, T., Nagao, Y.& Kushiyama, Y.Possible high ice particle production during graupel-graupel collisions.J.Atmos .Sci . 52, 4523–4527 (1995).
Article
Google Scholar
-
Griggs, D.J.& Choularton, T.W.Freezing modes of riming droplets with application to ice splinter production.Q.J.R.Meteorol.Soc. 109, 243–253 (1983).
Article
Google Scholar
-
Lauber, A., Kiselev, A., Pander, T., Handmann, P.& Leisner, T.Secondary ice formation during freezing of levitated droplets.J.Atmos .Sci . 75, 2815–2826 (2018).
Article
Google Scholar
-
Seidel, J.S.et al.Secondary ice production – no evidence of efficient rime-splintering mechanism.Atmos.Chem.Phys. 24, 5247–5263 (2024).
article
CASGoogle Scholar
-
Patade, S.et al.The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E.Atmos.Chem.Phys. 22, 12055–12075 (2022).
article
CASGoogle Scholar
-
Waman, D.et al.Dependencies of Four Mechanisms of Secondary Ice Production on Cloud-Top Temperature in a Continental Convective Storm.J.Atmos .Sci . 79, 3375–3404 (2022).
Article
Google Scholar
-
Bacon, N.J., Swanson, B.D., Baker, M.B.& Davis, E.J.Breakup of levitated frost particles.J.Geophys.Res.Atmos. 103, 13763–13775 (1998).
Article
Google Scholar
-
Deshmukh, A., Phillips, V.T.J., Bansemer, A., Patade, S.& Waman, D.New Empirical Formulation for the Sublimational Breakup of Graupel and Dendritic Snow.J.Atmos .Sci . 79, 317–336 (2022).
Article
Google Scholar
-
Wieder, J.et al.Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations.Atmos.Chem.Phys. 22, 9767–9797 (2022).
article
CASGoogle Scholar
-
von Terzi, L., Dias Neto, J., Ori, D., Myagkov, A.& Kneifel, S.Ice microphysical processes in the dendritic growth layer: a statistical analysis combining multi-frequency and polarimetric Doppler cloud radar observations.Atmos.Chem.Phys. 22, 11795–11821 ( 2022 ) .
Article
Google Scholar
-
Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P.& Luke, E.Fingerprints of a riming event on cloud radar Doppler spectra: Observations and modeling.Atmos.Chem.Phys. 16, 2997–3012 ( 2016 ) .
article
CASGoogle Scholar
-
Oue, M.et al.Linear depolarization ratios of columnar ice crystals in a deep precipitating system over the arctic observed by zenith-pointing Ka-band doppler radar.J.Appl.Meteorol.Climatol. 54, 1060–1068 ( 2015 ) .
Article
Google Scholar
-
Oue, M., Kollias, P., Ryzhkov, A.& Luke, E.P.Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic.J.Geophys.Res.Atmos. 123, 2797–2815 (2018).
Article
Google Scholar
-
Giangrande, S.E.et al.Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event.J.Geophys.Res.Atmos. 121, 5846–5863 (2016).
Article
Google Scholar
-
Hogan, R.J., Field, P.R., Illingworth, A.J., Cotton, R.J.& Choularton, T.W.Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar.Q.J.R.Meteorol.Soc. 128, 451–476 (2002).
Article
Google Scholar
-
Li, H., Korolev, A.& Moisseev, D.Supercooled liquid water and secondary ice production in Kelvin-Helmholtz instability as revealed by radar Doppler spectra observations.Atmos.Chem.Phys. 21, 13593–13608 (2021).
article
CASGoogle Scholar
-
Sinclair, V.A., Moisseev, D.& Von Lerber, A.How dual-polarization radar observations can be used to verify model representation of secondary ice.J.Geophys.Res. 121, 10,954–10,970 (2016).
Article
Google Scholar
-
Oue, M.et al.The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: Description and applications of a virtual observatory.Geosci.Model Dev. 13, 1975–1998 (2020).
Article
Google Scholar
-
Vignon, É.et al.Challenging and Improving the Simulation of Mid‐Level Mixed‐Phase Clouds Over the High‐Latitude Southern Ocean.J.Geophys.Res.Atmos. 126, 1–21 (2021).
Article
Google Scholar
-
Vignon, Besic, N., Jullien, N., Gehring, J.& Berne, A.Microphysics of Snowfall Over Coastal East Antarctica Simulated by Polar WRF and Observed by Radar.J.Geophys.Res.Atmos. 124, 11452–11476 (2019).
Article
Google Scholar
-
Morrison, H., Thompson, G.& Tatarskii, V.Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes.Mon.Weather Rev. 137, 991–1007 (2009).
Article
Google Scholar
-
Küchler, N.et al.A W-band radar-radiometer system for accurate and continuous monitoring of clouds and precipitation.J.Atmos.Ocean.Technol. 34, 2375–2392 ( 2017 ) .
Article
Google Scholar
-
Coen, M.C.et al.Identification of topographic features influencing aerosol observations at high altitude stations.Atmos.Chem.Phys. 18, 12289–12313 (2018).
article
CASGoogle Scholar
-
Proske, U., Bessenbacher, V., Dedekind, Z., Lohmann, U.& Neubauer, D.How frequent is natural cloud seeding from ice cloud layers (<-35°C) over Switzerland? Atmos.Chem.Phys. 21, 5195–5216 ( 2021 ) .
article
CASGoogle Scholar
-
DeMott, P.J.et al.Predicting global atmospheric ice nuclei distributions and their impacts on climate.Proc.Natl Acad.Sci. 107, 11217–11222 ( 2010 ) .
article
CASGoogle Scholar
-
Reisner, J., Rasmussen, R.M.& Bruintjes, R.T.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model.Q.J.R.Meteorol.Soc. 124, 1071–1107 (1998).
Article
Google Scholar
-
Phillips, V.T.J., Patade, S., Gutierrez, J.& Bansemer, A.Secondary ice production by fragmentation of freezing drops: Formulation and theory.J.Atmos .Sci . 75, 3031–3070 (2018).
Article
Google Scholar
-
Georgakaki, P.et al.Secondary ice production processes in wintertime alpine mixed-phase clouds.Atmos.Chem.Phys. 22, 1965–1988 (2022).
article
CASGoogle Scholar
-
Phillips, V.T.J.et al.Ice multiplication by breakup in ice-ice collisions.Part II: Numerical simulations.J.Atmos .Sci . 74, 2789–2811 (2017).
Article
Google Scholar
-
Sharma, V., Gerber, F.& Lehning, M.Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling.Geosci.Model Dev. 16, 719–749 (2023).
Article
Google Scholar
-
Yang, J.et al.High ice concentration observed in tropical maritime stratiform mixed-phase clouds with top temperatures warmer than −8°C.Atmos.Res.233, 104719 (2020).
-
Jing, X.et al.Pre-Activation of Ice Nucleating Particles in Deposition Nucleation Mode: Evidence From Measurement Using a Static Vacuum Water Vapor Diffusion Chamber in Xinjiang, China.geophy .Res .Lett. 49, 1–9 ( 2022 ) .
Article
Google Scholar
-
Kneifel, S.& Moisseev, D.Long-term statistics of riming in nonconvective clouds derived from ground-based doppler cloud radar observations.J.Atmos .Sci . 77, 3495–3508 ( 2020 ) .
Article
Google Scholar
-
Orr, B.W.& Kropfli, R.A.A method for estimating particle fall velocities from vertically pointing Doppler radar.J.Atmos.Ocean.Technol. 16, 29–37 (1999).
Article
Google Scholar
-
Yang, J., Lei, H., Hu, Z.& Hou, T.Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China.Atmos.Res. 142, 79–90 (2014).
article
CASGoogle Scholar
-
Barrett, A.I., Westbrook, C.D., Nicol, J.C.& Stein, T.H.M.Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis.Atmos.Chem.Phys. 19, 5753–5769 (2019).
article
CASGoogle Scholar
-
Dedekind, Z., Proske, U., Ferrachat, S., Lohmann, U.& Neubauer, D.Simulating the seeder-feeder impacts on cloud ice and precipitation over the Alps.Atmos.Chem.Phys. 24, 5389–5404 (2024).
article
CASGoogle Scholar
-
Moisseev, D.N., Lautaportti, S., Tyynela, J.& Lim, S.Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation.J.Geophys.Res.Atmos. 120, 12644–12655 (2015).
Article
Google Scholar
-
Dedekind, Z., Grazioli, J., Austin, P.H.& Lohmann, U.Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production? Atmos.Chem.Phys. 23, 2345–2364 (2023).
article
CASGoogle Scholar
-
Ferrone, A.& Berne, A.Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica.Earth Syst.Sci.Data 15, 1115–1132 ( 2023 ) .
Article
Google Scholar
-
Foskinis, R.et al.Drivers of Droplet Formation in East Mediterranean Orographic Clouds.Preprint at: https://doi.org/10.5194/egusphere-2024-490 (2024).
-
Gao, K.et al.Biological and dust aerosol as sources of ice nucleating particles in the Eastern Mediterranean: source apportionment, atmospheric processing and parameterization.Preprint at: https://doi.org/10.5194/egusphere-2024-511 (2024).
-
Zografou, O.et al.High Altitude Aerosol Chemical Characterization and Source Identification: Insights from the CALISHTO Campaign.Preprint at: https://doi.org/10.5194/egusphere-2024-737 (2024).
-
Gerber, H.Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser diffraction instrument.Appl.Opt. 30, 4824–4831 ( 1991 ) .
article
CASGoogle Scholar
-
Guyot, G.et al.Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory.Fr.Atmos.Meas.Tech. 8, 4347–4367 ( 2015 ) .
Article
Google Scholar
-
Brazda, V.et al.Cloud microphysics from the free space optical link point of view – Preliminary experimental results.In 2013 2nd International Workshop on Optical Wireless Communications (IWOW), https://doi.org/10.1109/IWOW.2013.6777778 (2013).
-
Hu, M.et al.Estimation of size-resolved ambient particle density based on the measurement of aerosol number, mass, and chemical size distributions in the winter in Beijing.Environ.Sci.Technol. 46, 9941–9947 (2012).
article
CASGoogle Scholar
-
Peters, T.M., Ott, D.& O’Shaughnessy, P.T.Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles.Ann.Occup.Hyg. 50, 843–850 ( 2006 ) .
CAS
Google Scholar
-
Mech, M.et al.PAMTRA 1.0: The Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere.Geosci.Model Dev. 13, 4229–4251 (2020).
Article
Google Scholar
-
Billault-Roux, A.-C.& Berne, A.Integrated water vapor and liquid water path retrieval using a single-channel radiometer.Atmos.Meas.Tech. 14, 2749–2769 (2021).
Article
Google Scholar
-
Karalis, M.et al.Effects of secondary ice processes on a stratocumulus to cumulus transition during a cold-air outbreak.Atmos.Res.277, 106302 (2022).
-
Lloyd, G.et al.The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch.Atmos.Chem.Phys. 15, 12953–12969 (2015).
article
CASGoogle Scholar
-
Bigg, E.K.The formation of atmospheric ice crystals by the freezing of droplets.Q.J.R.Meteorol.Soc. 79, 510–519 (1953).
Article
Google Scholar
-
Meyers, M.P., DeMott, P.J.& Cotton, W.R.New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model.J.Appl.Meteorol. 31, 708–721 ( 1992 ) .
Article
Google Scholar
-
Cooper, W.A.Ice Initiation in Natural Clouds.Meteorol.Monogr. 21, 29–32 (1986).
Article
Google Scholar
-
Sotiropoulou, G., Ickes, L., Nenes, A.& Ekman, A.Ice multiplication from ice–ice collisions in the high Arctic: sensitivity to ice habit, rimed fraction, ice type and uncertainties in the numerical description of the process.Atmos.Chem.Phys. 21, 9741–9760 (2021).
article
CASGoogle Scholar
-
James, R.L., Phillips, V.T.J.& Connolly, P.J.Secondary ice production during the break-up of freezing water drops on impact with ice particles.Atmos.Chem.Phys. 21, 18519–18530 ( 2021 ) .
article
CASGoogle Scholar
-
Libbrecht, K.G.Physical Dynamics of Ice Crystal Growth.Annu.Rev.Mater.Res. 47, 271–295 (2017).
article
CASGoogle Scholar
-
Georgakaki, P.et al.Data and scripts for “Unraveling secondary ice production in winter orographic clouds through a synergy of in-situ observations, remote sensing and modeling”.Zenodo https://doi.org/10.5281/zenodo.10838606 (2024).
© Copyright notes
The copyright of the article belongs to the author, please do not reprint without permission.
Related posts
No comments...